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Figure 1: Overview of the architecture of the proposed platform.

ABSTRACT
In recent years, multi-agent reinforcement learning (MARL) has
been increasingly applied to swarm intelligence, offering effec-
tive solutions for complex decision-making in multi-agent systems.
However, MARL models remain vulnerable to imperceptible per-
turbations, which can lead to erroneous decisions and potentially
cause system disruptions or failures. While existing research on
adversarial attacks predominantly focuses on traditional supervised
learning and single-agent reinforcement learning, the extension to
multi-agent scenarios has been largely overlooked. Furthermore, a
comprehensive platform for evaluating MARL robustness is lack-
ing. To address this gap, we propose an integrated framework for
robust evaluation of MARL. The platform integrates over six clas-
sical MARL algorithms, spanning both on-policy and off-policy
architectures. It supports more than ten interactive environments
across a diverse range of application domains, including gaming,
∗Both authors contributed equally to this research.
†Corresponding author.

sports, robotics, autonomous vehicles, drones, traffic signal control,
and power systems. We have implemented over eight adversar-
ial attack methods—targeting policies, states/observations, actions,
rewards, and environments—covering all stages of the MDP closed-
loop. Additionally, the platform includes more than five robustness
evaluation metrics, addressing both self-model and inter-model per-
spectives. It supports automated batch experiments and allows for
easy customization of agents and environments, enabling seamless
integration for rapid MARL robustness research. Our experiments
further validate the platform’s efficacy in evaluating and improving
MARL robustness.

CCS CONCEPTS
• Software and its engineering → Software safety; • Computer
systems organization → Reliability; • General and reference
→Metrics; Evaluation.
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1 INTRODUCTION
In recent years, multi-agent reinforcement learning (MARL) has
gained widespread application in swarm intelligence, providing
effective solutions for complex decision-making in multi-agent
systems [13, 38, 39]. However, MARL models face significant ro-
bustness challenges, as they are susceptible to imperceptible per-
turbations that can lead to erroneous agent decisions, potentially
resulting in system-wide disruptions or failures. Furthermore, these
models are exposed to adversarial attacks at various stages of the
Markov decision process (MDP) [26, 36, 42]. Despite the critical
importance of addressing robustness in MARL, existing research
on adversarial attacks has largely focused on single-agent environ-
ments, overlooking the distinct challenges posed by multi-agent
systems.

When evaluating MARL algorithms, it is crucial to account for
their distinct characteristics, such as non-unique perturbation tar-
gets, indirect attack objectives, and varying attacker perspectives.
These complexities make it challenging to directly adapt well-
established adversarial attack frameworks from other domains,
such as AISafety [8] and RobustART [33]. The unique nature of
multi-agent interactions requires tailored approaches, as traditional
adversarial systems may not fully address the intricacies of MARL
environments.

Recently, the field of MARL has seen the development of several
high-quality benchmark frameworks. The PyMARL project [30]
introduced the SMAC [30] benchmark suite, offering a modular
framework for evaluating various MARL algorithms. Building on
this, the EPyMARL project [27] extended its scope by incorporating
additional algorithms and environments. Yu et al. [37] subsequently
provided a comprehensive evaluation of MAPPO across four bench-
mark environments, highlighting its performance in multi-agent
settings. Researchers also developed the AdaptAUG framework [40],
an adaptive system that applies data augmentations to enhance the
sample efficiency and performance of MARL algorithms. Addition-
ally, Hu et al. introduced MARLlib [11], a framework built on RLlib
[21], supporting a wide range of environments and algorithms for
efficient MARL benchmarking. However, these frameworks primar-
ily focus on performance evaluation and do not address robustness
assessment. Developing a comprehensive robustness evaluation
platform for multi-agent reinforcement learning is therefore es-
sential, providing crucial technical support for both research and
industry applications.

In this work, we introduce a comprehensive model robustness
evaluation framework for multi-agent reinforcement learning, fea-
turing a rigorous and cohesive set of evaluation metrics. The frame-
work integrates over six classical MARL algorithms, encompassing

both on-policy and off-policy architectures, and supports more than
ten interactive environments across diverse application domains
such as gaming, sports, robotics, autonomous vehicles, drones, traf-
fic signal control, and power systems. We have implemented over
eight adversarial attackmethods, including state/observation-based,
policy-based, action-based, reward-based, and environment-based
attacks, covering all phases of the MDP closed-loop. Additionally,
the framework includes more than five robustness evaluation met-
rics, addressing both self-model and inter-model perspectives. It
also supports automated batch experiments and allows users to
define custom agents and environments, providing an efficient and
user-friendly platform for advancing MARL robustness research.

To thoroughly demonstrate the effectiveness of our evaluation
framework, we conducted a series of experiments across multiple
environments, employing various adversarial attack strategies. All
evaluation experiments were performed on our proposed adversar-
ial robustness evaluation platform, which we anticipate will assist
researchers in gaining a deeper understanding of adversarial fac-
tors and contribute to the enhancement of model robustness. Our
contributions are as follows:

• We unify on-policy and off-policy MARL algorithms into
an broad actor-critic architecture, provide various adversar-
ial attack methods for different stages, support customized
agent and environment, and provide a flexible configuration
automated batch experiment workflow.

• Based on our framework, we provide an open-sourced plat-
form, which containing 6+ MARL algorithms, 10+ MARL
environments, 8+ adversarial attackmethods, also could fully
evaluate model robustness through a total of 5+ self-model-
oriented and inter-model-oriented robustness metrics.

• We conduct extensive experiments to verify the effective-
ness of the proposed platform, and the results demonstrate
that the platform can effectively evaluate the robustness of
MARL algorithms. Meanwhile, we provide suggestions on
the selection of proper metrics with examples.

2 RELATEDWORK
2.1 Problem Formulation
Multi-agent reinforcement learning can be modeled as a decentral-
ized partially observable Markov decision process (Dec-POMDP),
which can be defined by a set of key elements ⟨𝑁,S, {A𝑖 }𝑖∈{1,...,𝑁 } ,
{𝜋𝑖 }𝑖∈{1,...,𝑁 } , 𝑃, {𝑅𝑖 }𝑖∈{1,...,𝑁 } , 𝛾⟩ [36].

• 𝑁 : the number of agents, where 𝑁 ⩾ 2 is referred as multi-
agent cases, and 𝑁 = 1 degenerates to a single-agent MDP.

• S: the set of environment states shared by all agents. Inmulti-
agent scenarios, the environmental state takes into account
the state information of all agents, usually represented as
S = S1 × S2 × . . . × S𝑁 .

• A𝑖 : the set of actions of agent 𝑖 . We denote A = A1 ×A2 ×
. . . × A𝑁 .

• 𝜋𝑖 : the set of policy of agent 𝑖 .
• 𝑃 : S × A → 𝛥 (S): for each time step 𝑡 , given agents’ joint
actions 𝑎 ∈ A, the transition probability from state 𝑠 ∈ S to
state 𝑠′ ∈ S in the next time step.
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• 𝑅𝑖 : S × A × S → R: the reward function that returns a
scalar value to the agent 𝑖 for a transition from (𝑠, 𝑎) to 𝑠′.

• 𝛾 ∈ [0, 1] is the discount factor that represents the value of
time.

The goal of multi-agent reinforcement learning is to find a joint
policy 𝜋∗ = {𝜋∗1 , 𝜋

∗
2 , . . . , 𝜋

∗
𝑁
} that maximizes the cumulative dis-

counted return 𝐺 over time.

2.2 Adversarial Attack in Reinforcement
Learning

Adversarial attacks involve small, often imperceptible perturbations
to the inputs of a neural network, which lead the model to produce
incorrect outputs. These attacks are generally categorized into two
types: white-box attacks, where the attacker has full knowledge
of the model’s architecture and parameters, and black-box attacks,
where the attacker only interacts with the model through its inputs
and outputs, without direct access to its internal structure.

The study of adversarial attacks has naturally extended to deep
reinforcement learning. Huang et al. [12] were the first to attack
strategies derived from deep reinforcement learning by applying
the FGSM algorithm [6], which is widely used in machine learn-
ing. They generated adversarial perturbations and directly added
them to the agent’s observations, successfully disrupting the perfor-
mance of deep learning agents. Li et al. [17] introduced Adversarial
Minority Influence (AMI), a practical black-box attack that exploits
the complexity of multi-agent interactions in centralized MARL (c-
MARL) to deceive agents into collectively harmful outcomes. This
marked the first successful attack on both real-world robot swarms
and simulated environments. To counter such vulnerabilities, they
also proposed the BARDec-POMDP framework, which enhances
c-MARL robustness against Byzantine failures by enabling agents
to learn adaptive policies. This framework helps agents collaborate
with identified allies and improves resilience andmicromanagement
in diverse scenarios [18].

2.3 Robustness Evaluation in Reinforcement
Learning

In reinforcement learning, robustness is primarily defined as the
ability of an algorithm to sustain stable and reliable performance
despite environmental uncertainties and adversarial attacks. The
objective of robust reinforcement learning is to enhance the algo-
rithm’s performance in worst-case scenarios, which may be either
deterministic or statistical in nature. Environmental uncertainty
typically stems from discrepancies between training and testing

conditions, such as the divergence between simulated and real-
world environments, the non-stationarity of the test domain, varia-
tions in the distribution of training and testing tasks, or the partial
observability of environmental transitions and rewards. This fo-
cus on robustness is crucial for deploying reinforcement learning
systems in practical, dynamic settings where conditions can vary
unpredictably.

To accurately evaluate robustness, appropriate platforms and
evaluation metrics are required. For example, the MuJoCo environ-
ment is commonly used to test robustness in continuous environ-
ments [34]. In addition, there are platforms for observation-based
attacks, such as Atari games [24], and control task environments
with safety zones [7, 15]. Using adversarial attack methods for
robust evaluation is a common practice, such as FGSM [6], PGD
[23], C&W [2], and other adversarial attack algorithms. In addition,
there are some robustness evaluation methods based on adversarial
training [23]. These methods have been widely used in the field of
computer vision, but their application in the field of reinforcement
learning is still limited. Guo et al. [9] proposed MARLSafe, a novel
robustness evaluation framework for cooperative multi-agent rein-
forcement learning (c-MARL) algorithms, which comprehensively
evaluates three aspects: state, action, and reward robustness. Li
et al. [19] proposed Mutual Information Regularization as Robust
Regularization (MIR3), a framework that uses off-policy evaluation
to implicitly optimize robustness against worst-case adversaries in
multi-agent reinforcement learning, achieving better robustness
and training efficiency without requiring explicit threat scenarios.

The research on robustness in multi-agent reinforcement learn-
ing remains incomplete, presenting challenges in effectively and
conveniently evaluating the resilience of MARL systems. A uni-
fied MARL robustness evaluation platform that integrates diverse
algorithms, environments, and performance metrics is crucial for
advancing the field.

3 ARCHITECTURE DESIGN
Building on the Heterogeneous-Agent Reinforcement Learning
(HARL) library [41], a PyTorch-based framework that accommo-
dates various MARL algorithms, our platform incorporates ex-
panded support for heterogeneous agents. We have integrated
additional MARL algorithms, several real-world simulated envi-
ronments, as well as full types of adversarial attack methods, and
extended robustness evaluation capability as shown in Table 1. Fur-
thermore, we have developed a comprehensive set of metrics for
evaluating the robustness of MARL algorithms, enabling thorough
assessments of their resilience. To facilitate efficient evaluation,

Table 1: Comparison of frameworks for multi-agent reinforcement learning

Framework Multi-Agent Robustness Customizable Real-world Simulated Environments Heterogeneous-Agent Full Types Attacks

HARL [41] ! ! !

MARLlib [11] ! ! !

PyMARL [30] !

EPyMARL [27] !

MARLSafe [9] ! !

Ours* ! ! ! ! ! !
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Table 2: Comparison of features in multi-agent reinforcement learning algorithms

Algorithm Architecture Policy Type Action Space Replay Buffer Task mode Learning Type

MAPPO [37] Actor-Critic on-policy Continuous/Discrete N Cooperative + Collaborative + Competitive + Mixed CC
HAPPO [41] Actor-Critic on-policy Continuous/Discrete N Cooperative + Collaborative + Competitive + Mixed CC
MADDPG [22] Policy-Q off-policy Continuous Y Cooperative + Collaborative + Competitive + Mixed CC
QMIX [29] Q-Mixer off-policy Discrete Y cooperative VD
VDN [31] Q-Mixer off-policy Discrete Y cooperative VD
IQL [32] Q off-policy Discrete Y Cooperative + Collaborative + Competitive + Mixed IL

we have also implemented robustness evaluation functionality and
designed pipeline tools for workflow management. The architec-
ture of our platform is shown in Figure 1, which mainly consists of
the RL core module, the adversarial attack module, the robustness
tuning module, and the automated workflow pipeline.

Specifically, the RL core module includes components such as
Agent, Environment, Replay Buffer, Runner, and Evaluator. TheAgent
is responsible for decision-making and interaction, the Environment
is responsible for simulation and interaction, the Replay Buffer is
responsible for storing and sampling experiences, the Runner is
responsible for model training, and the Evaluator is responsible for
model evaluation. These components together support a complete
MARL closed-loop workflow, on which the other modules are built.

In addition to the built-in MARL algorithms and environments,
we also provide custom Agent and Environment functions to facil-
itate users to access the environment and evaluation algorithms
more quickly and conduct customized experiments according to
their own needs.

The adversarial attack module implements various adversarial
attack methods based on state, action, reward, and environment,
supporting the attack and robustness evaluation of MARL algo-
rithms.

The automated workflow pipeline realizes the automated ex-
ecution of processes such as model training, adversarial attacks,
robustness evaluation, data export, visualization, etc., making it
convenient for users to quickly conduct MARL robustness research.

3.1 MARL Algorithms
Our platform integrates multiple MARL algorithms, each character-
ized by distinct architectures, learning types, and action spaces, as
detailed in Table 2. Some algorithms operate on a Q-learning archi-
tecture, such as QMIX, VDN, and IQL, while others are based on a

broad actor-critic architecture like MAPPO. Additionally, some al-
gorithms, such as MADDPG, blend Policy Gradient and Q-learning
architectures. Each algorithm is implemented natively, posing con-
siderable engineering challenges when integrating a diverse array
of architectures, policies, and coding practices into a unified adver-
sarial attack evaluation framework.

To address these challenges, we have chosen the broad actor-
critic structure as the foundational architecture for the platform’s
algorithms, thereby standardizing various approaches under this
umbrella. For instance, we have adapted QMIX into an Actor-Mixer
structure, which supports the Q-learning architecture through the
computation and updating of Q-values. This standardization sim-
plifies the integration process and enhances the platform’s ability
to systematically evaluate adversarial robustness across different
MARL algorithms.

3.2 Environments
The platform supports a variety of MARL environments, as shown
in Table 3. In the design, we considered various types of environ-
ments, such as cooperative, collaborative, competitive, and mixed,
as well as fully observable, partially observable, discrete action
space, continuous action space, and other environment characteris-
tics. In addition to supporting classic environments in the field of
multi-agent reinforcement learning, such as SMAC, MPE, MAMu-
JoCo, etc., it also supports some environments related to real-world
applications, such as MetaDrive involving autonomous driving,
Bi-DexHands involving robot collaboration, Quadrotor Swarms
involving drone collaboration, as well as real-life network system
control, voltage control, and other environments. This provides
researchers with a rich experimental environment, which helps to
more comprehensively evaluate the robustness of MARL algorithms
and provides references for practical applications.

Table 3: The taxonomy of platform supported environments

Name Learning Mode Observability Action Space Interact Mode

SMAC [30] Cooperative + Collaborative Partial Discrete Simultaneous
SMACv2 [5] Cooperative + Collaborative Partial Discrete Simultaneous
MPE [25] Cooperative + Collaborative + Competitive + Mixed Full Discrete + Continuous Simultaneous / Asynchronous

MAMuJoCo [28] Cooperative + Collaborative Partial Continuous Simultaneous
Google Research Football [14] Cooperative + Collaborative Full Discrete Simultaneous

MetaDrive [16] Collaborative Partial Continuous Simultaneous
Bi-DexHands [3] Cooperative Partial Continuous Simultaneous

Quadrotor Swarms [1] Collaborative Partial Continuous Simultaneous
Network System Control [4] Cooperative Partial Discrete Simultaneous

Voltage Control [35] Cooperative Partial Continuous Simultaneous



MARL Evaluation Framework The Sixth International Conference on Distributed Artificial Intelligence, Dec 18–22, 2024, Singapore

3.3 Evaluation Metrics
In reinforcement learning, the interaction between the agent and
the environment is continuous, making the average episode reward
a common metric for evaluating model performance. However,
unlike accuracy in image classification, which is a dimensionless
percentage, the reward is a numerical value. Additionally, the initial
reward value of a reinforcement learning model during training is
not zero; it can be either positive or negative, and these values may
differ across various environments. Consequently, while the global
reward can indicate performance changes before and after an attack,
it is not suitable for comparing performance differences across
various environments [20]. To address this issue, we proposed and
implemented several metrics from the perspectives of self-model-
oriented and inter-model-oriented robustness.

3.3.1 Self-model-oriented robustness metric.

Definition 3.1. We abandon the use of reward difference to di-
rectly measure robustness. Instead, we use the performance vari-
ation amount (R) of the model before and after training as the
evaluation basis, which formula is:

R𝑖 = 𝑟𝑖 − 𝑟0𝑖 , (1)
where 𝑖 refers to MARL models with different implementation
details or optimization techniques under the same algorithm, 𝑟0

𝑖
refers to the average episode reward value that can be obtained by
evaluating the model once before normal training, and 𝑟𝑖 refers to
the average episode reward value that can be obtained by evaluating
the model once after normal training. Therefore, for a MARL model
that is trained normally with reasonable parameters, its R value
range is (0, +∞).

Definition 3.2. Based on definition 3.1, we define the model’s
Self-Robustness Change Rate (SRR) as follows:

SRR𝑖 =
𝑟𝐴
𝑖
− 𝑟𝑖

𝑅𝑖
, (2)

where 𝑟𝐴
𝑖

refers to the reward value that the model can obtain
after being evaluated once after being adversarial attacked. Since
the SRR is a relative metric, its value range is (−∞, +∞), where
its value indicates the magnitude of performance change, and the
sign indicates the direction of performance change after being
adversarial. A positive number indicates improved performance,
while a negative number indicates a decline in performance.

3.3.2 Inter-model-oriented robustness metric. The SRR indicator
evaluates the model itself and cannot assess the differences between
different models. To address this, we propose three inter-model-
oriented robustness metrics.

Definition 3.3. Based on definition 3.2, we can obtain the Rela-
tive Self-Robustness Change Rate (rSRR) relative to the baseline
by calculating the SRR error between the target model and the
baseline model, with the following formula:

rSRR𝑡 = SRR𝑡 − SRR𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , (3)

where 𝑡 represents the target model which which is a homogeneous
model that uses the same algorithm as the baseline model but with
different implementation details. When rSRR > 0, it means that

the target model has better robustness than the baseline model,
otherwise worse.

Definition 3.4. TrickedPerformanceChangeRate (TPR) refers
to the performance change of the fine-tuned model compared to
the baseline model without adversarial attacks. The formula is as
follows:

TPR𝑡 =
𝑟𝑡 − 𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
, (4)

where TPR > 0 indicates that the fine-tuned model performs better
than the baseline model, conversely worse.

Definition 3.5. Tricked Robustness Change Rate (TRR) refers
to the robustness change of the fine-tuned model compared to
the baseline model under adversarial attacked. The formula is as
follows:

TRR𝑡 =
(𝑟𝐴𝑡 − 𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) − (𝑟𝐴

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
− 𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 )

𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

=
𝑟𝐴𝑡 − 𝑟𝐴

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
, (5)

where TRR > 0 indicates that the fine-tuned model is more robust
than the baseline model, conversely worse. It is important to note
that the difference between TRR and rSRR lies in their evaluation
methods. TRR assesses the change in performance before and after
training the baseline model, whereas rSRR evaluates the model
directly by calculating each SRR and obtaining the result through
subtraction.

3.3.3 Comprehensive robustness metric. By integrating the three
metrics mentioned above, a comprehensive metric is used to char-
acterize the overall performance and robustness of a certain one
fine-tuned model, which is calculated using the weighted average
of TPR, TRR, and rSRR values, collectively known as the Com-
prehensive Robustness Change Rate (CR). The formula for this
calculation is as follows:

CR𝑡 = 𝛼TPR𝑡 + 𝛽TRR𝑡 + 𝛾rSRR𝑡
s.t. 𝛼 + 𝛽 + 𝛾 = 1, 0 ≤ 𝛼, 𝛽,𝛾 ≤ 1. (6)

This indicator combines metrics from various models to assess
both performance and robustness. It can be tailored for practical ap-
plications using custom weighting coefficients to balance these two
aspects. For instance, with weights set at 𝛼 = 0.5, 𝛽 = 0.5, and 𝛾 = 0,
it integrates the model’s original performance before an attack with
its robustness performance afterward. This is achieved through a
weighted average of the model’s TPR and TRR metrics, providing a
comprehensive evaluation of the model’s overall robustness.

3.4 Adversarial Attack Methods
The Markov decision process involves multiple stages and closed-
loop features, adding complexity and security risks. For instance,
adversaries can attack agents at various stages. To thoroughly as-
sess the robustness of MARL algorithms, we implement a range of
adversarial attack methods, detailed in Table 4. These methods are
categorized into state-based, action-based, reward-based, policy-
based, and environment-based types, allowing attackers to select
the most suitable approach for their evaluation needs.



The Sixth International Conference on Distributed Artificial Intelligence, Dec 18–22, 2024, Singapore Jing et al.

Table 4: Comparison of features in multi-agent reinforcement learning adversarial attack algorithms

Method Name Attack Type Effective Phase Adversary’s Knowledge Multi-step Execution Required

Random Noise [20] State-based Evaluation phase White-Box/Black-Box N
Iterative Perturbation [20] State-based Evaluation phase White-Box N

Adaptive Action Induction [20] State-based Evaluation phase White-Box Y
Random Action Action-based Evaluation phase Black-Box N

Flipping Reward Signals [10] Reward-based Training phase White-Box Y
Random Policy Policy-based Evaluation phase White-Box N
Traitor [20] Policy-based Evaluation phase White-Box Y

Environmental Factor Search Environment-based Evaluation phase Black-Box N

In addition to the adversarial attackmethods outlined in [20] (e.g.,
RandomNoise, Iterative Perturbation, Adaptive Action, and Traitor),
we have enhanced the platform by incorporating new methods.
These include action-based attacks (e.g., Random Action), policy-
based attacks (e.g., Random Policy), environment-based attacks
(e.g., Environmental Factor Search), and reward-based attacks (e.g.,
Flipping Reward Signals). This expansion allows for a broader range
of adversarial attack scenarios.

3.4.1 Random Noise Attack. We introduce random noise following
a Gaussian distribution with a mean of 0 and a variance of 𝜎 to
the partial observations generated by the environment. This noisy
observation is then fed into the agent’s policy, enabling adversarial
attacks on the agent.

3.4.2 Iterative Perturbation Attack. We implement a gradient-based
iterative perturbation algorithm (e.g., PGD) to perturb the agent’s
state multiple times in order to achieve adversarial attacks on the
agent. The model used to compute the gradient is the victim model,
which is the evaluated MARL model. From the perspective of the
PGD algorithm, it performs an untargeted iterative attack, aimed
at misleading the agent’s policy away from the observation distri-
bution that can output the optimal action.

3.4.3 Adaptive Action Induction Attack. Due to the nature of rein-
forcement learning, greedy attacks at each time step may not lead to
a substantial decrease in total return during long-term planning. To
address the limitations of the iterative perturbation attack method,
we developed an improved version called the adaptive action induc-
tion attack. This approach involves training a reward target that
opposes that of the victim. By utilizing the gradient information
from the adversarial agent’s policy model, we iteratively perturb
the victim’s partial observations to execute a long-range attack on
the victim’s policy.

3.4.4 Random Action Attack. Perturbing the global state or local
observations obtained during the data sampling phase can indirectly
affect the actions output by the agent’s policy. Directly altering the
output actions does not require knowledge of the agent’s policy
model, allowing for a fully black-box attack. The Random Action
attack algorithm is an action-based black-box attack that randomly
replaces the actions produced by a specific agent. This method
assesses whether the overall system can maintain robustness when
a local agent makes suboptimal or incorrect decisions.

3.4.5 Flipping Reward Signals Attack. In reinforcement learning,
reward signals are essential for agent training. If these signals are
flipped, agents may learn incorrect policies, which can negatively
impact their performance. The Flipping Reward Signals attack al-
gorithm specifically targets an agent by altering its reward signals.
This method assesses the agent’s robustness when exposed to in-
correct reward signals during training.

3.4.6 Random Policy Attack. In reinforcement learning, an agent’s
policy is the core of its behavior. By randomly replacing the policies
of some agents, the Random Policy attack method assesses the
robustness of the entire system when the policies of local agents
change.

3.4.7 Traitor Attack. Traitor attacks are policy-based attacks that
involve training a traitor agent to act as an adversary. The traitor
agent is trained to maximize the victim agent’s inverse reward,
thereby misleading its policy and enabling the minority to influence
the majority. This method evaluates the robustness of the victim
agent when faced with a traitor agent.

3.4.8 Environmental Factor Search Attack. Environmental factors
significantly influence agent learning and decision-making, as agents
interact with their surroundings. The Environmental Factor Search
attack method evaluates the robustness of agents by combining,
searching, or perturbing these factors. This approach is vital for
understanding agent generalization.

These attack algorithms target various stages of reinforcement
learning and have distinct implementation logics. Consequently,
different categories of attack algorithms cannot be directly applied
to the same code location; instead, they must be implemented sep-
arately. To resolve this, we abstract and encapsulate the imple-
mentation logic of these algorithms, unifying them under a single
adversarial attack process based on their categories. By inheriting
abstract classes, we can implement the logic for each adversarial
attack algorithm, accommodating various categories.

For instance, state-based attack algorithms, such as random noise
attacks and iterative perturbation attacks, are grouped under a
state-based attack process. Similarly, policy-based attack algorithms,
including random policy attacks and traitor attacks, fall under a
policy-based attack process. For each attack process, we implement
both on-policy and off-policy algorithm logic according to different
learning strategies. This approach allows us to use a unified adver-
sarial attack call interface to support multiple adversarial attack
algorithms on a single model.



MARL Evaluation Framework The Sixth International Conference on Distributed Artificial Intelligence, Dec 18–22, 2024, Singapore
Pi
pe
lin
e

E
va
lu
at
io
n	
M
od
ul
e

A
tt
ac
k	
M
od
ul
e

T
ra
in
in
g	
M
od
ul
e

R
L
	C
or
e	
M
od
ul
e

A
na
ly
si
s	M

od
ul
e

Start

Blackbox	Attack
Method

Blackbox
Evaluation

Knowledge
Access?

Load
Model

Blackbox Whitebox

Whitebox
Evaluation

Whitebox	Attack
Method

Unified	Resource	Scheduling

Multi-step
Execute
Required?

Y

Call	training

Evaluation
Result

Caculate	Metrics Data	visualization

Over
Evaluation
Target？

Algorithm

Training

Model

Trained	Model

N

Figure 2: The evaluation process of the platform, including model training, adversarial attack, robustness evaluation, and
visualization analysis.

3.5 Evaluation Architecture
The platform’s core business process is evaluating the robustness
of multi-agent reinforcement learning models. This involves the
interaction and integration of various functional modules within
the platform.

As illustrated in Figure 2, the evaluation process begins by iden-
tifying whether the focus is on pre-trained models or algorithms.
If the target is an algorithm, the platform’s training module is ac-
tivated for pre-training. Once the pre-trained model is ready, the
model to be tested is loaded, and the evaluation module determines
if it is a white-box or black-box model.

For a white-box model (e.g., one with accessible source code
and policy checkpoints), it must comply with the platform’s inter-
face requirements. The evaluation module then invokes white-box
adversarial attack methods from the attack module to assess the
model.

In contrast, for a black-box model (e.g., one that accepts input
observations and query actions via an HTTP API), the evaluation
module retrieves data from themodel’s query interface and employs
black-box adversarial attack methods from the attack module for
evaluation.

In white-box adversarial attack methods, the evaluation module
assesses whether multi-step execution is needed based on the attack
principles. If required, it activates the trainingmodule to develop the
adversarial policy. Once the evaluation configuration and specific
processes are complete, the RL core module will conduct unified

scheduling to execute the entire evaluation process and obtain the
results.

The analysis module is then activated to export and merge the
evaluation data, calculate comprehensive metrics, visualize the
results, and generate the final analysis, completing the model eval-
uation process.

3.6 Customized Agent and Environment
In addition to supporting multiple algorithms and environments,
our platform offers extensibility for user-defined agents and envi-
ronments.

The Agent class abstracts the agent’s policy, providing a stan-
dardized interface for receiving observations and outputting actions.
Users can seamlessly integrate their custom agent policies by in-
heriting the Agent class and implementing the required interface.
This feature allows users to train and evaluate any custom agent
policy within the platform.

The EnvExample class abstracts environment interactions, and
we have defined its interaction interface following the OpenAI
Gym’s interface specifications. In addition to the core methods (e.g.,
step and reset), we require the provision of information such as the
number of agents, action space, observation space, and global state
space. Similar to the Agent class, users can seamlessly integrate
their custom environments by inheriting the EnvExample class and
implementing the necessary interface. This enables users to apply
the platform’s MARL algorithms to custom environments.
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Figure 3: The visualization results of the mamujoco_HalfCheetah-6x1_mappo experimental group.

Through this approach, we aim to provide greater flexibility,
allowing users to tailor the platform to meet a wider range of
practical needs.

4 EXPERIMENT
To evaluate the platform’s effectiveness and its robust evaluation
capabilities, we conducted experiments to assess how various ad-
versarial attack methods affect the robustness of multi-agent rein-
forcement learning models. We selected four MARL environments
with both discrete and continuous action spaces, totaling 8 different
scenarios: SMAC (i.e., 3m, 2s3z), MAMujoco (i.e., HalfCheetah-6x1,
Ant-4x2), MPE (i.e., simple_spread, simple_speaker_listener) and
Network (i.e., catchup, slowdown). We choose MARL algorithms
that are suitable for each environment, including MAPPO, MAD-
DPG, QMIX, and HAPPO.

We started by training the initial multi-agent reinforcement
learning models. Each model was then evaluated against up to five
different adversarial attacks (e.g., Random Noise, Iterative Pertur-
bation, Adaptive Action Induction, Random Policy, Traitor). We
then statistically analyzed the impact of different adversarial attack
methods on the robustness of different algorithms, as illustrated
in Figure 3. The points in the figure are the episode reward values
under each discrete adversarial attack method. The dotted line con-
nects all the values of the same algorithm in order to intuitively
represent its trend and verify the strength of the adversarial attack
method.

From the perspective of adversarial attack strength, we can ana-
lyze the experimental results through the trend of the line graph
and draw the following experimental conclusions: 1) The adver-
sarial attack method we implemented is effective and successfully
impacts the model’s performance. 2) Multi-step execution necessi-
tated adversarial attack methods (e.g., Adaptive Action Induction,
Traitor) have worst-case attack capabilities generally.

From the perspective of algorithms, we can compare the robust-
ness of different algorithms in the same scenario and then expand
to the general comparison of different algorithms in a wide range of

scenarios. Then we arrive at the following conclusions: 1) In most
environments and scenarios, MAPPO generally outperforms MAD-
DPG in terms of performance and robustness. 2) Algorithms with
weaker vanilla performance tend to be more robust against specific
adversarial perturbations. For instance, MADDPG demonstrates
greater resilience than MAPPO when subjected to state-based iter-
ative perturbations methods (e.g., Iterative Perturbation, Adaptive
Action Induction) in the mpe_simple_speaker_listener scenario.
3) The trends of different algorithms in the same scenario show
a consistent pattern, indicating that the impact of the adversarial
algorithms is stable.

5 CONCLUSION
In this study, we have developed a comprehensive evaluation frame-
work for multi-agent reinforcement learning that supports over six
algorithms, ten interactive environments, eight adversarial attack
methods, and five robustness evaluation metrics. Our proposed
metrics are designed to provide insights from two essential perspec-
tives: self-model-oriented and inter-model-oriented evaluations.
Furthermore, our platform offers an out-of-the-box solution for
assessing model robustness. To validate the effectiveness of our
framework, we conducted a series of experiments across various
environments, utilizing different adversarial attack strategies facili-
tated by our platform. The results demonstrate that the robustness
of MARL models can be effectively evaluated using these adver-
sarial methods, highlighting potential vulnerabilities and the ef-
fectiveness of different defense strategies. Based on our findings,
we present discussions and recommendations aimed at enhancing
model robustness. Our framework is designed to provide a rigorous
and thorough evaluation, enabling a deeper understanding of the
resilience characteristics of MARL systems. We hope this contribu-
tion will aid other researchers in exploring the factors influencing
robustness in MARL and in developing strategies to enhance the
resilience of these systems.
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