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Figure 1: Proposed architectural variants

ABSTRACT

Contemporary efforts in this field of Large Language Models pri-
marily aim to enhance model capabilities by scaling up both the
architecture and data volumes. However, there has been little ex-
ploration into reducing model sizes while maintaining their ef-
fectiveness. In this study, we introduce three modifications to the
decoder-only transformer architecture—namely ParallelGPT (pgpt),
LinearGPT (Igpt), and ConvGPT (cgpt). These variants demonstrate
comparable performances to the conventional architecture, with
Igpt outperforming it in 4 out of 7 benchmarks with less than
half the parameters. We open-source the model weights and the
complete codebase for these implementations for further research.
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1 INTRODUCTION

Research on Large Language Models (LLMs) has traditionally fo-
cused on either scaling the model size to billions or the refinement
of pretraining data for relatively smaller models of size 1B to 8B.
Though the results are promising, there is an inherent problem that
the current research has not explored yet - exploring variants of
the GPT architecture that are compute-efficient and effective across
multiple tasks. In this study we present 3 architectural variants of
the traditional GPT architecture that are either competitive with the
traditional architecture or outperforms it. The subsequent sections
provides an overview on the architectures and their performances
on different benchmarks.

2 ARCHITECTURAL VARIANTS

In this section, we introduce three variant architectures derived
from the traditional GPT architecture to address various limitations
in training and inference. These architectures are designed to enable
faster training and inference. The three proposed architectures are
ParallelGPT (pgpt), LinearGPT (Igpt), and ConvGPT (cgpt).

ParallelGPT: The deeper layers in a transformer architecture have
very little information to work with and hence do not contribute to
the performance of a language model as much as the earlier layers
as discussed in [1]. Also the linear flow of information constrains
the knowledge to be learned from a single direction. To address
these problems, we introduce ParallelGPT (pgpt), where the N
decoder blocks in a traditional GPT architecture are split across P
parallel paths with each path containing N/P decoder blocks. The
outputs of the parallel paths are combined using a vector of weights
WeRP, which are learned during training. Each parallel path has
its own embedding layer to make sure that each path learns the
training data from a different dimension compared to other paths.

ConvGPT and LinearGPT: CNNs while processing an image, pro-
gressively downsample the image as the earlier layers learn basic


https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

The Sixth International Conference on Distributed Artificial Intelligence, Dec 18th — Dec 22nd, 2024, Singapore

Anonymous, et al.

Table 1: Benchmark Results for Different Models

Benchmark gpt pept lgpt cgpt pgpt-1
HellaSwag 0.2625 0.2604 0.2517  0.2492  0.2527
WinoGrande 0.5036  0.4925 0.4870  0.4751  0.4933
CommonSenseQA  0.1376  0.1605 0.1458  0.1540  0.1572
ANLI 0.3300 0.3350 0.3290  0.3240  0.3340
PIQA 0.5071  0.5131 0.5185 0.5256  0.5125
COPA 0.5300  0.5200 0.5500  0.5000 0.5600
ARC Easy 0.2333  0.2439 0.2491 0.2298  0.2509

information while the deeper layers learn abstractions over the
knowledge of the earlier layers. Similar to that, we hypothesize
that when processing text, the embeddings of the tokens need to be
downsampled so that the earlier layers learn sentence structures
while the deeper layers learn abstractions like word ordering, de-
pendency between words among others. To validate our hypothesis
we introduce two architectures called ConvGPT and LinearGPT
which progressively downsample the vector representations of the
tokens by introducing conv-1d and linear layers after every n de-
coder blocks in a traditional GPT architecture. The downsampling
makes the architectures faster and controls overfitting.

3 EXPERIMENTS AND RESULTS

We train four different models gpt, pgpt, lgpt and cgpt and the
common parameters are: context_size is 1024, vocab_size is 50304,
n_layer is 8, n_head is 8 and embedding_dim is 512. For pgpt, we
set P to 2 and for Igpt and pgpt we set n to 2. The model size and
hardware requirements are listed in Table 2, where pgpt-1 refers to
pgpt, with one path dropped during inference. Each of the variants
were trained for 5000 steps ( 25%) on the fineweb-edu [2] dataset
(which consists of 10B tokens) using 4xA5000 GPUs.

3.1 Results on various benchmarks

Table 1 presents the various benchmarks on which the models were
evaluated on and it can be clearly seen that the architectural vari-
ants are either competitive with the traditional gpt architecture or
outperform it. Igpt is the best performing model, outperforming
gpt on 4 out of the 7 benchmarks. The comparison of results be-
tween pgpt and pgpt-1is quite surprising since even after dropping
a parallel path pgpt-1's performance is almost as similar as pgpt.
Further research is required on this front, which we leave for future
work.

3.2 Advantages of the architectures

The following list of points present the advantages of the proposed
architectures:

e pgpt enables parallel training for faster processing.
e pgpt supports dropping of parallel blocks to speed up infer-
ence.

e Igpt and cgpt minimize overfitting and increase speed by
decreasing block dimensions.

o All the architectures maintain similar performance with
fewer parameters.

Table 2: Model Hardware Requirements

Model #Params Memory
ept 772M  294.53MB
pept  777M  296.53MB
lgpt 36.4M 138.95MB
cgpt  364M  138.95MB
pgpt-1  64.8M  247.52MB

4 CONCLUSION

In this paper, we presented architectural variants to the transformer
architecture that are faster, have fewer parameters but still perform
similarly to the traditional GPT architecture. This opens up several
questions and we hope that our work motivates further research
along this direction.
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