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Abstract
In Federated Learning, a Central Node (CN) coordinates a group of
agents to collectively train a shared neural network. However, due
to the inherent information asymmetry, some agents may behave as
free riders and exploit the system by reaping rewards or by passively
benefiting from the common model without contributing to the train-
ing process. Proof-of-Training (PoT) effectively allows the CN to
verify that an agent has completed training honestly and correctly.
However, this method incurs high costs, including proof generation
by the agent, communication expenses, and proof verification by the
CN. Conducting Proof-of-Training in each FL round is impractical
due to these expenses. To enhance verification efficiency, a feasible
strategy is to conduct probabilistic verification, where only a subset
of agents is sampled for verification in each FL round. This paper
aims to design a new incentive mechanism to motivate the agents be-
have honestly and potentially mitigate free riders. Our model hinges
on two parameters: (i) the reward allocated to the local trainers,
namely 𝑅, and (ii) a probability vector, denoted as ®𝑝, indicating the
likelihood of subjecting each agent to PoT scrutiny. We show that it
is possible to characterize a set of parameters 𝑅 and ®𝑝 that minimizes
the total CN cost and makes the routine Individually Rational and
Incentive Compatible, so that every agent will actively train their
local model. Finally, we validate our model through extensive experi-
ments. Our findings show that our characterization of the best reward
and validation scheme is correct as they minimize the cost of the
training routine without compromising the convergence speed. All
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our experiments are conducted on various datasets, demonstrating
the wide applicability of our results.
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1 Introduction
Federated Learning (FL) is a novel approach to machine learning
that allows different data owners to train a neural network without
sharing information with competitors [41] and simplifies the data
transmission process required to aggregate datasets owned by dif-
ferent companies [34]. The idea behind any FL routine is simple,
instead of collecting the data from different agents, the CN collect
the parameters of a model that every single agent trains using their
own data. After collecting the parameters, the CN combines them
and form a new set of parameters, which is broadcasted back to the
agents. The agents will then train again on the generated model and
generate a new set of parameters, which are sent back to the CN,
starting the procedure all over again. Despite the idea being simple,
it allows every agent to not share its own dataset, it reduces the
transmission cost, and the procedure is protected from leaks thanks
to secure aggregation protocols [2, 29].

Even though this decentralized approach to machine learning
works well in theory, it shows some flaws when implemented in
practice. Indeed, FL operates under the assumption that all partici-
pating agents will cooperate with the CN to facilitate the efficacy of
the global model. However, this assumption may not always hold true
in real-world scenarios. Training a model takes time and resources
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that must be paid by the agent performing the training, which can
lead agents to behave as free riders. In FL, a free rider is an agent
that does not actively contribute to the learning process of the global
model while profiting from having access to the global model and/or
passively benefits from the incentive scheme. This behaviour induces
an interesting social aspect to the FL model, which has lead the sci-
entific community to analyze the problem from a game-theoretical
viewpoint, [17, 18, 28, 35, 44]. In this framework, agents and CN
are regarded as agents that aim to achieve their maximum utility by
calibrating their level of participation. The CN must address several
key objectives: maintaining agent engagement in the training routine,
discouraging free-rider behavior, minimizing costs, and upholding
privacy and security throughout the process. To accomplish these
aims, the CN can leverage methods like Proof-of-Training (PoT)
that allows the CN to discern whether an agent is engaging in free-
rider behavior without compromising the overall privacy of the FL
process [27, 33]. Proof-of-Training effectively allows the CN to
verify that an agent has completed training honestly and correctly.
However, this method incurs high costs, including proof generation
by the agent, communication expenses, and proof verification by the
CN. Conducting PoT in each FL round is impractical due to these
expenses. To enhance verification efficiency, a feasible strategy is to
conduct probabilistic verification, where only a subset of agents is
sampled for verification in each FL round. In this paper, we present
a novel game-theoretical reward scheme for FL with probability
verification.

Our Contribution
In this paper, we present a novel game-theoretical reward scheme
for FL with probability verification. Our main contributions are
summarized as follows

(1) In Section 3, we propose a game theory reward model for FL
with a probabilistic verification method. In our model, the CN
is in charge of determining two parameters during each train-
ing round: (i) the reward scheme, which is determined by the
total reward, namely 𝑅, that is distributed among the partici-
pating agents, and (ii) the verification scheme, characterized
by a vector ®𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) ∈ [0, 1]𝑛 , wherein 𝑝𝑖 repre-
sents the probability of subjecting agent 𝑖 to PoT scrutiny. We
posit that the utility of the CN hinges on two crucial factors:
the aggregate size of data held by participating agents and
the total cost incurred by the reward and verification scheme.
Once the CN selects 𝑅 and ®𝑝, every agent decides whether
is in their interest to take part in the training process and
whether it is more convenient to act as a free rider depending
on the utility entailed to these behaviours.

(2) In Section 4, we study the equilibrium of this game and fully
characterize the reward and verification schemes that keep
honest agents engaged with the training routine, deter them
from acting as free riders, and maximize the utility of the CN.
Moreover, we characterize the optimal amount of data that
the agents should be used to maximize the utility of the CN.

(3) Lastly, in Section 5, we validate our results through extensive
numerical experiments. All our results confirm that carefully
picking a verification scheme and the reward allows the CN
to efficiently train the model while minimizing the overall

Figure 1: General training structure in FL.

cost induced by the routine. The positive results come without
compromising the convergence speed of the global model.
Finally, it is worth stressing that our experiments are run on
several different datasets, showcasing how broad the applica-
bility of our results is.

2 Preliminaries
In this section, we recall the basic notions on Federated Learning
and Proof-of-Training verification scheme.

2.1 Federated Learning
In the context of FL, the CN undertakes the task of training the
model by aggregating the models updated by agents. Each agent
possesses its own dataset denoted as 𝑋𝑖 , with the size of the dataset
represented as 𝑛𝑖 = |𝑋𝑖 |. The cumulative size of all datasets is
defined as N =

∑
𝑖 𝑛𝑖 .

Federated average (FedAvg) is an approach to implementing
federated learning to train a model distributively while preserving
data-privacy. It assumes N participants (distributed nodes) who re-
spectively own private local data-sets 𝑋1, 𝑋2, . . . , 𝑋𝑁 and a model
owner (CN) that coordinates the training. Each round, the CN broad-
casts a global model with parameters 𝜃global to the distributed nodes.
The distributed nodes will then train this model on their local data
and submit their new parameters 𝜃𝑖 to the CN. The CN averages
these parameters and updates the global model, concluding one
round of training in FL. This process is illustrated in Figure 1.

To maintain data confidentiality, the CN employs secure data
aggregation, which means the CN cannot access the specific model
parameter values of each agent. Secure techniques, such as encryp-
tion and privacy-preserving methods, are used to protect individual
parameters during transmission and aggregation. Techniques such
as secure multi-party computation (SMPC) or homomorphic en-
cryption are commonly utilized, allowing the CN to obtain only
the encrypted and aggregated results without directly accessing the
individual agent’s parameters.

2.2 Free riders and PoT detection
In FL, free rider behavior refers to the behavior of agents participat-
ing in FL who choose not to actively contribute their local model
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updates but instead rely on updates from other agents to benefit from
model improvements and rewards while avoiding their own com-
putation costs. This behavior is considered selfish and unfair as it
relies on the contributions of others without making any contribution
themselves. When agents choose free rider behavior, they do not
contribute meaningful updates to the global model training. This can
result in degraded performance or slower convergence of the global
model. Agents that actively participate in FL and contribute their
model updates bear more computation costs, while free rider agents
avoid these costs. This leads to an unfair burden on some agents,
potentially reducing their participation and willingness to cooperate.

For this reason, several researchers have explored various ap-
proaches to address the free rider phenomenon in Federated Learn-
ing and other domains [4, 14, 26]. Many methods aim to detect
free-riding agents using tools from anomaly detection systems [11,
12, 36]. While these methods have proven reliable, they are often
tailored to address specific types of attacks. The effectiveness of
these detection systems depends significantly on how free riders
generate the parameters or gradients they submit to the central node.
An alternative approach involves designing incentive schemes that
reward honest participants and penalize dishonest ones. However,
this requires the Central Node to assess the behaviour of each agent.
To achieve this, cryptographic tools such as Proof-of-Training (PoT)
routines can be employed. PoT allows the Central Node to detect
free rider behaviour without explicitly revealing the actual model
parameters of each agent, preserving privacy and confidentiality
losses. Agents who fail to provide valid proof or exhibit inconsistent
responses can be identified as potential free riders, allowing the
central node to take appropriate actions to mitigate their behaviour.
Despite these benefits, PoT routines entail a high cost, making them
not feasible to the Central Node to run them on every agent. Our
solution to this issue is to implement a probabilistic version of such
routines in which only part of the trainers are subject to scrutiny,
leading to an overall lower cost. This paper aims to design a new
incentive mechanism to motivate the agents behave honestly and
potentially mitigate free riders.

3 A Game Model for Federated Learning with
Probabilistic Proof-of-Training on Free Riders

In this section, we develop a game-theoretical framework that cap-
tures the dynamics between the agents and the CN. In our formalism,
the CN has to reward every agent that was not caught to be a free
rider at the end of the round. The overall routine can then be phrased
as a game in which the participating agents try to maximize their
own utility.1 In what follows, we detail the objectives and strategies
available to the agents and to the CN.

CN’s strategy. In our model, the CN is in charge of determining
the reward and the verification scheme of the game. We assume that
the CN decides the total reward to distribute across the agents at
every round, namely 𝑅𝑡 > 0. We also assume that the process of
running the Proof-of-Training (PoT) routine incurs a cost for every
data entry of every agent, denoted as 𝑉 . For the sake of simplicity,
we focus on this class of verification costs because they are standard

1For this reason, from now on, we will refer to the FL routine or to the FL game
interchangeably.

in most Proof-of-Training schemes (e.g. each scheme that leverages
a Zero-Knowledge proof routine [11]). Notice however that this
framework and the techniques we use can be adapted to handle any
cost that can be represented as a polynome of 𝑛. Therefore, the cost
of verifying an agent using a dataset composed of 𝑛 (𝑡 )

𝑖
elements is

𝑉𝑛
(𝑡 )
𝑖

. If one or more agents are caught submitting false information
to the CN, they are excluded from participating in any learning
round, and their promised reward is waived. Notice that, according
to our formalism, Free Riders that are not caught by the verification
scheme can participate to the next training round.

The CN must publicly announce the total promised reward for
round 𝑡 , denoted as 𝑅𝑡 , and the verification probability scheme 𝑝,
which are defined as follows:

• The total reward at time 𝑡 , denoted with 𝑅𝑡 ∈ [0, +∞), is
the amount of resources that the CN uses to compensate the
local trainers. We assume that the training cost to each agent
𝑖 is proportional to the size of their dataset, 𝑛 (𝑡 )

𝑖
, and hence

divide the reward between agents proportionally to this value.

That is, the reward to an agent at round 𝑡 is 𝑅𝑡
𝑛
(𝑡 )
𝑖

N .
• The verification scheme, which is a function 𝑝 : N𝑚 →

[0, 1]𝑚 . The output of the function, i.e. 𝑝 (®𝑛), is a vector whose
entries correspond to the probability 𝑝𝑖 (®𝑛) ∈ [0, 1] that agent
𝑖 will be subjected to verification by the CN. We want 𝑝 to
not depend on the index 𝑖 but only on the agents’ report, so
that 𝑝𝑖 (®𝑛) = 𝑝 𝑗 (®𝑛) if and only if 𝑛 (𝑡 )

𝑖
= 𝑛

(𝑡 )
𝑗

. In particular, 𝑝
is an anonymous function.

Putting it all together, the cost of the CN at round 𝑡 is as follows

𝑐𝐶𝑁 (𝑡) = 𝑅𝑡 +𝑉
∑︁

𝑖∈[𝑚]
𝑛
(𝑡 )
𝑖

𝑝 (𝑛 (𝑡 )
𝑖

) . (1)

We measure the training quality of the CN model through a concave
function 𝑔, which denotes the utility accrued by the CN upon receiv-
ing the parameters of agents utilizing a combined dataset comprising
N𝑡 elements. We assume that 𝑔 is concave to reflect the diminishing
impact of adding data as the total dataset size increases. This char-
acteristic is commonly referred to as diminishing marginal utility.
Therefore, the utility of the CN at round 𝑡 is defined as

𝑢𝐶𝑁 (𝑡) = 𝑔(N𝑡 ) −
(
𝑅𝑡 +𝑉

∑︁
𝑖∈[𝑚]

𝑛
(𝑡 )
𝑖

𝑝 (𝑛 (𝑡 )
𝑖

)
)

(2)

where N𝑡 =
∑
𝑖 𝑛

(𝑡 )
𝑖

is the total number of data used by local trainers
during training round 𝑡 . The functional in (2) balances between the
training-efficiency of the neural network and the total cost of keeping
agents honestly engaged with the training process.

Agents’ strategies. Each combination of {(𝑅𝑡 , ®𝑝)}𝑡 ∈N determines
a game for every round 𝑡 . In our model, every agent can either
train honestly or act as a free rider. Since free riders are noxious to
the model, the CN employs a probabilistic Proof-of-Training (PoT)
detection to remove them. Before each round, the CN announces
a probability, denoted as 𝑝𝑖,𝑡 , representing the likelihood of agent
𝑖 being detected. If an agent is detected as a free rider, the CN
withdraws the initially promised reward and removes them from the
set of trainers.
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Table 1: Table of the most used variables and their meaning.

𝑚 number of local trainers
𝑋𝑖 data set owned by agent 𝑖
𝑛
(𝑡 )
𝑖

data size of agent 𝑖 at time round 𝑡

N𝑡 size of all the data owned by the trainers
𝑅𝑡 total reward promised at round 𝑡

𝑉 cost per data of running the PoT
𝛼 cost per data of training a local model
𝛽 transmission cost
®𝑝 vector representing the verification scheme

• Honest Agents. An agent acting honestly actively trains their
local model as intended in the FL routine prescribed by the
CN. Since they train honestly, their utility in round 𝑡 does not
depend on the verification scheme, and thus is defined as

𝑢𝑖 (𝑡) =
𝑛
(𝑡 )
𝑖

N𝑡
𝑅𝑡 − 𝛼𝑛

(𝑡 )
𝑖

− 𝛽,

where, (i) 𝑅𝑡 represents the total reward allocated by the CN to
the agents, distributed in proportion to 𝑛

(𝑡 )
𝑖

; (ii) 𝛼 denotes the
cost for training their respective model; and (iii) 𝛽 represents
the communication cost the agent incurs when they transfer
the models to the CN.

• Free Riders. An agent acting as a free rider during round
𝑡 choose not to participate in local training and instead aim
to receive rewards by submitting randomly generated mod-
els/gradients. Since they do not engage in training, their only
cost is the one induced by the parameters transmission. Fi-
nally, notice that, since every free rider has a probability 𝑝𝑖 (®𝑛)
to be detected, its utility at the 𝑡 round is

𝑢𝑖 (𝑡) = (1 − 𝑝𝑖 (®𝑛))
𝑛
(𝑡 )
𝑖∑𝑛

𝑖 𝑛
(𝑡 )
𝑖

𝑅𝑡 − 𝛽.

Each agent is motivated by self-interest, so they will honestly
train if the following two conditions are met:

(a) The procedure is individually rational, that is every agents
benefit from participating to the FL routine. In our framework,
this is expressed by the condition

𝑛
(𝑡 )
𝑖∑𝑚

𝑖 𝑛
(𝑡 )
𝑖

𝑅𝑡 − 𝛼𝑛
(𝑡 )
𝑖

− 𝛽 ≥ 0

for every round 𝑡 .
(b) The procedure is incentive compatible, that is acting as a

free rider is less rewarding than behaving truthfully. In our
framework, this is expressed by the condition

(1 − 𝑝 (𝑛 (𝑡 )
𝑖

))
𝑛
(𝑡 )
𝑖∑𝑚

𝑖 𝑛
(𝑡 )
𝑖

𝑅𝑡 − 𝛽 ≤
𝑛
(𝑡 )
𝑖∑𝑚

𝑖 𝑛
(𝑡 )
𝑖

𝑅𝑡 − 𝛼𝑛
(𝑡 )
𝑖

− 𝛽,

for every round 𝑡 .
Our aim is to establish a reward and verification scheme that

induces an individually rational and incentive compatible routine
that minimises the total cost of the CN.

In Table 1 we report all the main variables of our model.

4 Equilibrium Analysis
In this section we characterize the round reward amount 𝑅𝑡 and
the verification probability function 𝑝 that minimizes the CN’s cost
while keeping the agents honestly engaged with the training process.

Since the function 𝑔 does not depend on 𝑡 , the optimal reward and
verification scheme for a given round 𝑡 does not depend on 𝑡 . For
this reason, throughout this section, we simplify the notation by
dropping the index 𝑡 . To find the optimal solution, we proceed as
follows. First, we fix the total amount of data owned by the local
trainers, namely N . For every N , we find the best possible 𝑅 and 𝑝

entailed to N . Once we express the optimal 𝑅 and 𝑝 as a function of
N , we retrieve the complete solution.

Given a fixed N , maximizing the utility defined in (2) is the same
as minimizing the cost 𝑐𝐶𝑁 (𝑡) defined in (1), with respect to 𝑅 and
𝑝. We therefore obtain the following mathematical programming
problem

min
𝑅,𝑝

𝑅 +𝑉
𝑚∑︁
𝑖=1

𝑝𝑖 (®𝑛)𝑛𝑖 , (3)

s.t. ∀𝑖 ∈ [𝑚]

(1 − 𝑝𝑖 (®𝑛))
𝑛𝑖∑𝑚
𝑖 𝑛𝑖

𝑅 − 𝛽 ≤ 𝑛𝑖∑𝑚
𝑖 𝑛𝑖

𝑅 − 𝛼𝑛𝑖 − 𝛽, (4)

𝑛𝑖∑𝑚
𝑖 𝑛𝑖

𝑅 − 𝛼𝑛𝑖 − 𝛽 ≥ 0, (5)

where, constraints (4) enforce that the dominant strategy of local
trainers is to behave as honest agents (Incentive Comaptibility) and
(5) enforces that every agent takes part in the training procedure
willingly (Individual Rationality).

THEOREM 4.1. Let ®𝑛 be the vector containing the agents data-
sizes. For every round 𝑡 , the solution of (3) are as follows

𝑅(®𝑛) = max
{√

𝑉𝛼,
𝛽

min𝑖∈[𝑚] 𝑛𝑖
+ 𝛼

}
N and

𝑝𝑖 (®𝑛) =
𝛼

max{
√
𝑉𝛼,

𝛽

min𝑖∈ [𝑚] 𝑛𝑖
+ 𝛼}

,

where N =
∑𝑚
𝑖 𝑛𝑖 .

PROOF. Let N be the sum of all the datasets used by the local
trainers. First, we notice that 𝑝𝑖 (®𝑛) is subject only to the Incentive
Compatibility constraint (4), that is

(1 − 𝑝𝑖 (®𝑛))
𝑛𝑖∑𝑚
𝑖 𝑛𝑖

𝑅 − 𝛽 ≤ 𝑛𝑖∑𝑚
𝑖 𝑛𝑖

𝑅 − 𝛼𝑛𝑖 − 𝛽

−𝑝𝑖 (®𝑛)
𝑅∑𝑚
𝑖 𝑛𝑖

≤ −𝛼

that is

𝑝𝑖 (®𝑛) ≥
𝛼N
𝑅

. (6)

Since we want to minimize the objective in (3), we obtain that the
best verification scheme is given by the formula 𝑝𝑖 (®𝑛) = 𝛼N

𝑅
. If we

plug this relation in (3), we are able to express the objective value of
the problem as a function of 𝑅, that is

𝑅 +𝑉
𝑚∑︁
𝑖=1

𝛼N
𝑅

𝑛𝑖 . (7)
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To find the best value of 𝑅, we take the derivative of (7) and study
the stationary points. A simple computation allows us to infer that
the best reward total to distribute at every time round is

𝑅 = N
√
𝑉𝛼.

Notice, however, that depending on 𝛼 ,𝑉 and 𝛽 , the value we obtained
might not satisfy the IR constraint (5), which reads as

𝑛𝑖∑𝑚
𝑖 𝑛𝑖

𝑅 ≥ 𝛼𝑛𝑖 + 𝛽,

for every 𝑖 ∈ [𝑚]. We then infer 𝑅 ≥ max𝑖 {𝛼 + 𝛽
𝑛𝑖
}N . Therefore we

conclude that 𝑅 = max{
√
𝑉𝛼, 𝛼 + 𝛽

min𝑖∈ [𝑚] 𝑛𝑖
}N . By plugging the

latter identity into 𝑝𝑖 (®𝑛) = 𝛼N
𝑅

, we conclude the proof. □

Notice that the probability of selecting one agent does not depend
on 𝑛𝑖 as long as √

𝑉𝛼 ≥ 𝛼 + 𝛽

holds, since 𝛼+𝛽 ≥ 𝛼+ 𝛽
𝑛𝑖

for every 𝑛𝑖 ∈ N. Intuitively, this condition
tells us that if the verification cost is too high, the best strategy that
the CN has is to check every agent with equal probability. Moreover,
given N , the vector ®𝑛 that minimizes the reward to share is such
that 𝑛𝑖 = N

𝑚 for every 𝑖 ∈ [𝑚], i.e. every agent trains on the same
amount of data. To conclude, we show that given the best 𝑅 and 𝑝

as a function of N , we can define the best possible value of N by
taking the derivative of

N →𝑔(N) −max
{√

𝑉𝛼, 𝛼 + 𝛽

𝑛𝑖

}
N

−𝑉
∑︁
𝑖

𝑛𝑖
𝛼

max{
√
𝑉𝛼, 𝛼 + 𝛽

𝑛𝑖
}

and set it to be equal to zero.

THEOREM 4.2. Let
√
𝑉𝛼 ≥ 𝛼 + 𝛽 hold and let 𝑔 be a concave

differentiable function. Then, we have that the best number of data
that the CN needs to train the model is

N = (𝑔′)−1 (2
√
𝑉𝛼) .

PROOF. Since 𝑔 is concave by hypothesis, we have that the func-
tion

N → 𝑔(N) −
(√

𝑉𝛼N +𝑉
∑︁

𝑖∈[𝑚]
𝑛
(𝑡 )
𝑖

√︂
𝛼

𝑉

)
= 𝑔(N) − 2

√
𝑉𝛼N

is concave with respect to N as well, hence it admits a unique
maximizer. By taking the derivative of the CN’s utility and by setting
it equal to zero we have

𝑔′ (N) − 2
√
𝑉𝛼 = 0,

which concludes the proof. □

5 Experiments
In this section, we run extensive numerical experiments to validate
our findings. In particular, we consider the case in which the CN
needs to train a classifier using a Convolutional Neural Network.
The scope of our experiments is threefold:

(i) First, we want to confirm that the probability 𝑝 defined in
Theorem 4.1 leads to the lowest cost for the CN;

(ii) Second, we want to evaluate the convergence speed and the
cost the CN incurs when we include our verification scheme;

(iii) Third, we want to assess to which extent changing the data
used to perform the learning routing affects the results.

In what follows, we outline the specifics of our experiments, i.e.
how we model the agents, the parameters of the training rounds, and
the specifics of the neural network we train. We denote with D the
global dataset, i.e. the set containing all the data own by the agents.

Data Allocation: We denote with 𝑚 the number of agents taking
part in the training routine, be them Honest Agents or Free Riders.
The CN is allocated data in the same manner as the agents. We refer
to the CN and agents collectively as nodes. For a fixed global dataset
D, we assume that every node has the same number of elements
of D, moreover we assume that the data owned by each node does
not change throughout the rounds. Every node is thus allocated 1

𝑚+1
of the global dataset D, namely D𝑖 for the agents and DCN for the
CNs. Each D𝑖 and DCN is disjoint from the others, so that the each
element of D is available to one and only one node. We do this by
removing values selected randomly one-by-one from D until each
node has the specified amount of data. Once allocated its data, each
node performs a stochastic 90-10 train-test split on the data. The
testing data is kept separate for all future rounds and only used to
collect performance metrics. We ran experiments where each D⟩
could vary from each-other, but found its affect on performance
was negligible compared to other factors; in particular, the ratio of
total data owned by honest agents to that owned by free-riders. We
therefore chose not to include those experiments in this paper.

The Agents: At the beginning of every training round, each agent
decides whether they join the training round or not by computing
their expected utility after the CN announces the Reward 𝑅 and
the Verification Scheme 𝑝′. The reward is calculated according to
Theorem 4.1, and the Verification Scheme is our dependant variable.

Every honest agent trains its own neural network for a full epoch
each round, mimicking the behaviour of people truthfully engag-
ing with the training routine. Every Free Rider taking part in the
training round resubmits the global model sent by the CN after they
applying one of the following two operations: (i) they add some
Gaussian noise to each weight in the network, or (ii) they perform a
delta-weight attack, which generates the fake updates by combining
two previously received global model [23].

Since our model has two different types of Free Riders, we assume
that half of the free-riders attack the routine by performing attack (i),
and the other half attacks the routine by performing attack (ii). Which
type of attack is performed by the Free Rider is determined during
the initialisation of the problem and does not change throughout the
training rounds.

The Specifics of the Convolution Neural Network: We con-
duct our experiments on three standard open datasets: MNIST [21],
FASHION-MNIST [39], and CIFAR-10 [20]. We train a basic Con-
volutional Neural Network, with 9 hidden layers and around 100 000
parameters. Indeed, we use the same model architecture for each
dataset and change only the input layer to match the dimensions of
the input data, hence the differences in parameter numbers.
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The Federated Learning Routine: Each Federated Learning
routine is composed of 10 rounds, each corresponding to an epoch
of training. After a round is completed, the CN gathers all the model
trained by the agents participating in the training routine and ag-
gregates them by taking the mean of each weight in the network
across all models. The CN then performs its own round of training
on the aggregated model, using its own dataset DCN. We repeat this
process for different values of 𝑝 in order to assess how implementing
the verification scheme affects the participation of the Free Riders
and the overall cost of the training process.

The CN’s Utility: The cost to the CN was defined in Equation 1.
However, this cost is the expected cost to the CN, rather than the ac-
tualised cost. In order to compute the cost in practice, we replace the
verification probability term 𝑝 (𝑛 (𝑡 )

𝑖
) with a binary function 𝑞(𝑛 (𝑡 )

𝑖
)

which is 1 if the agent 𝑖 was verified on round 𝑡 , and 0 otherwise.
Additionally, we add a term to include the cost of the CN’s training
which depends on its datasize, namely 𝑋

(𝑡 )
CN . This term was omitted

from Equation 1 as it is a constant value, and therefore has no effect
on the minimisation. We can therefore express the actualised cost
function as

𝑐′CN (𝑡) = 𝑅𝑡 +
𝑚∑︁
𝑖

𝑦
(𝑡 )
𝑖

𝑞(𝑛 (𝑡 )
𝑖

)𝑉 + 𝛼𝑋
(𝑡 )
CN . (8)

Notice that, up to a constant, the expected value of (8) is equal to the
original cost presented in 1.

Trials: We repeat each experiment 10 times. All data presented is
the mean over these 10 trials.

5.1 Parameters
In what follows, without incurring in any loss of generality we set
𝛼 to be equal to 1. Now notice that for a given 𝑉 , 𝛽 will change
the result if and only if 𝛽 > 𝑛𝑖

√
𝑉 − 1, i.e. if and only if the cost

of transferring the model is greater than the cost of training it. In
practice, the cost of training a neural network will almost always
exceed the cost of transferring its weights, and this is one of the
assumptions behind the concept of Federated Learning itself. We
can therefore arbitrarily fix the value of 𝛽 to some value ≤ 𝑛𝑖

√
𝑉 − 1.

This leaves us with 𝑉 , the number of honest agents (𝑚H), and
the number of free-riders (𝑚FR) as the main parameters for our
experiments. The values of the parameters used to generate the
figures in this section are shown in Table 2. Additional combinations
of parameters, not directly discussed in the following section, are
listed in Table 3. All of our experimental results validated our theory,
however those listed in Table 2 were found to be the most illustrative
of our findings.

The dependant variable of our experiments is the validation prob-
ability. We use the notation 𝑝′ to refer to this variable, and 𝑝 to refer
to the optimal value obtained from Theorem 4.1.

5.2 Discussion of Results
In this section we comment on our results and discuss the trends we
see in the data across the different metrics we collected: the Loss of
the model, the Accuracy of the model, and the Cost incurred by the
CN. All metrics are collected at the end of each epoch, after the CN

Table 2: Values of parameters used to generate the results plotted
in figs. 3 to 6.

Parameter 𝑚H 𝑚FR 𝛼 𝛽 𝑉

Value 5 15 1 5000 100

Table 3: Additional values of parameters tested, not shown in
figures.

Parameter 𝑚H 𝑚FR 𝑉

Values 5, 10 2, 5, 10, 15 4, 16, 100

had combined the models are performed its own round of training.
We use the results from the MNIST dataset in the graphs in this
section to illustrate our findings. However, across the three datasets
we used in our experiments, all three of our experiments showed the
same trends, if to slightly different extents. This is demonstrated by
Figure 2.

The results across the different metrics we measured fell into two
behavioural groups: 𝑝′ < 𝑝 and 𝑝′ ≥ 𝑝. For our parameters, this is
𝑝′ < 0.1 and 𝑝′ ≥ 0.1. The main difference between these groups is
that, as predicted by Theorem 4.1, the free-riders stop participating
at 𝑝′ ≥ 0.1, and thus stop stealing reward and poisoning the training.

Loss and Accuracy: We use categorical cross-entropy as our loss
function, while the accuracy is measured as the ratio of the number
of successes over the number of trials, that is

𝐴𝑐𝑐 =
number of successes

number of trials
.

As it is shown in Figures 4 and 3, for 𝑝′ < 0.1, the models perform
worse in both metrics. The influence of free-riders reduces accuracy
and increase loss at all epochs, and decreases the convergence speed.
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Figure 2: Comparison of mean loss of our models trained on
three datasets for nine epochs. The shaded regions show a 95%
confidence interval. 𝑝′ = 𝑝 is indicated by the dashed line.
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Figure 3: Plot of average accuracy of our models trained on the
MNIST dataset.

We generally see that as 𝑝′ decreases, the performance further de-
creases, as free-riders are less likely to be detected and removed
from the round. The 𝑝′ ≥ 0.1 group all perform virtually the same,
with any difference being statistically insignificant. This is expected,
as there are no free-riders participating to influence training.

Cost: The cost to the CN each round is calculated according
to Equation 8. In these results section we specifically consider the
cumulative cost – the cumulative cost on round 𝑡 is

∑𝑡
𝑗=1 𝑐

′
CN ( 𝑗).

As demonstrated in Figure 5, the two groups are very distinct from
one-another in terms of cost to the CN. It is clear the 𝑝′ < 𝑝 group
is significantly more expensive to the CN, as the large number of
free-riders require more reward-payouts. In this group, lower values
of 𝑝′ cost slightly more on average than higher values, as the free-
riders are less likely to be detected and removed. Although, this is
slightly diminished by the increased cost of running the PoT routine.
The 𝑝′ ≥ 𝑝 group displays a greater spread of costs, with a higher
𝑝′ directly corresponding to a greater cost. This is due to the cost of
running additional PoT verifications, despite no free-riders actually
participating.

The findings of our study are comprehensively summarized in
Figure 6. The results indicate that, first and foremost, preventing free-
riders from participating is the most critical factor. Our theorems
accurately predict the optimal value of 𝑝′ that minimizes both cost
and loss, and, although not depicted in the graph, also maximizes ac-
curacy. This validation underscores the robustness of our theoretical
model. Furthermore, our analysis demonstrates that increasing 𝑝′

beyond 𝑝 results in higher costs without any corresponding improve-
ment in loss or accuracy. These insights highlight the importance
of carefully selecting 𝑝′ to achieve the best balance between cost
efficiency and performance.

6 Related Works
FL has gained significant attention in the field of AI, despite being a
relatively new area of research [25]. Prior works have contributed
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Figure 4: Plot of average loss of our models trained on the
MNIST dataset.
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Figure 5: Plot of average cumulative cost of our models trained
on the MNIST dataset.

extensively to the understanding of FL, with a primary focus on cross-
device settings [41, 42]. There have been a few studies, that have
enriched the diversity of research on FL by considering cross-silo
settings, [43]. Through these diverse investigations, the significance
of pairing FL with an incentive mechanisms has been consistently
underscored. In this section, we aim to provide the reader a compre-
hensive understanding of FL while incorporating relevant findings
from prior works.

Incentive mechanisms. In [6], the authors proposed a general
game-theoretical framework that considers three key self-interested
actors in FL: data providers, users, and the FL model owner. The
authors highlight the problem of information asymmetry, where the
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Figure 6: Plot of how both the average cumulative cost and loss
vary after 10 rounds of training for different values of 𝑝′ on the
MNIST dataset. 𝑝′ = 𝑝 is indicated by the dashed line.

model owner lacks complete information about the data providers
due to their private attributes, such as data and cost. This informa-
tion asymmetry makes the design of effective incentive mechanisms
for FL challenging. Moreover, incentive mechanisms for FL should
possess certain desirable properties such as incentive compatibil-
ity, individual rationality, and fairness. Indeed, traditional incentive
mechanisms are inadequate for FL due to the unique characteristics
of the FL setting [45]. As a result, incentive mechanisms need to
be specifically tailored for FL. For this reason, various alternative
incentive mechanisms have been proposed, such as employing auc-
tions mechanisms [5, 13, 43], Stackelberg games [45], and Contract
Theory [15]. Perhaps the most promising approach is the lightweight
and incentive-compatible model introduced in [43]. The authors
extend a multi-dimensional procurement auction proposed in [3],
resulting in a mechanism that incentivizes participants to contribute
honestly. Experimental results in their study demonstrate a reduction
of 51.3% in training rounds, on average, for datasets such as MNIST,
Fashion MNIST, CIFAR-10, and HPNews. Despite these positive
results, their study has been condacted without considering possible
free rider attacks, [8, 23].

Another approach to design meaningful incentive schemes, con-
sists in assessing which parameters are actively improving the global
model allows to fairly distribute rewards and keep the local trainers
engaged in the training process. A large portion of the currently
proposed approaches rely on Shapley Values [31]; however, it is
well-known the computation of Shapley Value is computationally
expensive [9], leading to the exploration of approximation methods
[32, 37]. Other promising approaches for contribution evaluation
include utilizing deep reinforcement learning within a Stackelberg
game model to learn from historical training records [45] and incor-
porating reputation as a factor [15].

Free rider attacks. Free riders attacks were firstly studied in [8],
where the authors showed that aggregating free rider weights sig-
nificantly reduces convergence speed of the model. This pioneering
work highlighted how important is to defend the FL structure from

free rider attacks be them simple free rider attacks (returning global
parameters) or disguised free rider attacks (adding noise to the con-
tributions). The first mechanism for FL able to detect free riders was
presented in [23]. Their approach utilized the DAGMM, an anomaly
detection method [46]. In their work, they focus on two types of free-
rider attacks: one that replaces the parameter weights from global
models with random weights sampled from a uniform distribution,
and one that generates weights by subtracting two parameter sets
from previous global models.

Free Rider detection. There are several approaches to identify
free riders. In [38], the authors tried to identify free riding nodes
in a given graph by suitably weighting each node. In [24], the au-
thors make use of a Deep autoencoding Gaussian mixture model
(DAGMM) as an anomaly detector to decide whether agent is hon-
estly training and which one is a free rider. This approach has been
then improved [12] and enriched with a reputation and contribution
system [36]. Lastly, we mention [16], in which each node is in charge
of checking whether its neighborhood nodes are behaving as free
riders or not. In this paper, we consider the case in which the Central
Node runs an incentive scheme, to keep the agents engaged with the
training procedure, and a probabilistic Proof-of-Training detection
method (as in [27]) to prevent free riders from participating in the
training routine.

7 Conclusion and Future Work
Addressing Free Riders’ behaviours in cooperative mechanisms is
an important issue in several applied areas. Motivated by the rising
popularity of Federated Learning routines to train Neural Networks
and their susceptibility to Free Riders, we designed a reward model
endowed with probabilistic verification that keeps honest trainers en-
gaged while preventing free riders from passively benefiting from the
reward scheme. First, we have introduced a novel game-theoretical
framework in which the Central Node can leverage Probabilistic
Proof-of-Training (PoT) to effectively detect free riders. We have
then thoroughly described the agents’ utilities and the cost of the
Central Node and characterized when the reward and verification
scheme induces an Individually Rational and Incentive Compatible
routine. Consequentially, we retrieved the schemes that maximize
the utility of the Central Node. Finally, we have assessed our theoret-
ical results by running several numerical experiments. Our empirical
validation underscores the practical viability of the proposed model
in addressing free rider phenomena within FL environments.

Moving forward, we aim to expand our study in several ways.
First, further exploration into randomized incentive mechanisms
could further lower the training cost of the CN. Another way to
reduce the cost incurred by the Central Node would be to detect some
atypical nodes using clustering methods, as done in [10, 19, 22].
This direction of study is extremely promising as fast clustering
routines have been studied and developed in recent years [1, 7, 30,
40]. Additionally, we believe that investigating the scalability and
robustness of our proposed framework across diverse FL settings
and network topologies would further enhance our results. Lastly,
it would be interesting to study a dynamic framework in which the
agents and the neural network change depending on the different
rounds.
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